Уровня СМФП в области левой (s.) и правой (d.) миндалин (Amygd.) в период 28 страница

Уровня СМФП в области левой (s.) и правой (d.) миндалин (Amygd.) в период 28 страница - №1 - открытая онлайн библиотека

Рис. 36. Результаты статистической обработки тестов по запоминанию цифр у 40 больных паркинсонизмом.

Наверху - два типа динамики импеданса в двух различных структурах мозга (приведены характерные кривые). Внизу - два типа динамики мультиклеточной активности (постстимульные гистограммы). 1-й тип - изменения возникают в начале теста, 2-й тип - отсроченные изменения активности. В центре - на срезе мозга указаны структуры, в которых производились наблюдения. Цифры в знаменателе - общее число исследованных в данной структуре точек мозга, в числителе - число точек мозга, в которых наблюдались воспроизводимые изменения наблюдаемых физиологических процессов.

Что очень важно подчеркнуть сейчас? Кроме связи памяти со структурами мозга очень важным является усиление или ослабление этой связи в зависимости от местного и общего функционального состояния здорового и больного мозга. Процесс памяти, если и организованный в мозгу по полисистемному принципу, характеризуется наличием не только общих, ключевых звеньев для всех систем, но и звеньев более или менее жестких в каждой из систем. И хотя здесь, по-видимому,

придется говорить о разных степенях жесткости, не исключено, что в основе положительных клинических эффектов разрушения, в частности, вентролатерального ядра при гиперкинезах (паркинсонизме) лежит не только выключение гиперактивного звена патологической системы и не только перерыв путей, но и выключение важного звена, влияющего на долгосрочную память! В то же время, если по крайней мере ряд звеньев системы (систем!) памяти жестко генетически структурно запрограммирован у человека как представителя вида, в мозгу каждого человека территориальная организация зон, модулирующих память, индивидуальна, а также преимущественно связана (точнее сцеплена) с деятельностью. Так, вентролатеральное ядро зрительного бугра, стимуляция которого влияет и на краткосрочную, и на долгосрочную память, является важным, хотя и компенсируемым при разрушении (гибким?) звеном системы обеспечения движений, эмоций, некоторых видов психической деятельности и т. д. А данные этого рода, в свою очередь, подтверждают высказанное в предыдущей главе положение о местных функциональных перестройках структур, связанных с различными видами деятельности и одновременно с записью, хранением и считыванием памяти.

Было бы неправильным ставить память наравне с другими функциями мозга.

Память является базисным механизмом, свойством мозга, и факт ее организации также, по-видимому, по системному принципу не должен как бы низводить ее на уровень других систем. Память - тот основополагающий механизм, который лежит в основе возможности проявления всех онтогенетически формирующихся видов деятельности и соответственно всех обеспечивающих их мозговых систем. И вто же время во всех или во многих звеньях этих мозговых систем присутствуют базисные фиксирующие механизмы, позволяющие формироваться не только системе обеспечения функций, но одновременно и поддерживающей ее матрице памяти. Индивидуальность зон мозга, влияющих на память, существует, но может быть несколько преувеличена. Она может быть связана с индивидуальностью в строении мозга, которая, как известно, приводит к тому, что самые точные стереотаксические расчеты не в состоянии обеспечить применительно к расположению конкретных нейронноглиальных популяций полную сравнимость расположения в мозгу электрода при одномоментных стереотаксических операциях и при использовании метода вживленных электродов. В соответствии с этим уже даже факт получения однотипных результатов при стимуляции предположительно одной и той же зоны мозга, скажем, у двух-трех из десяти больных может расцениваться в пользу наличия не только индивидуальных, но и видовых закономерностей. Однако и исследования по изучению эффектов электрической стимуляции, и исследования нейрофизиологического кодирования психических процессов в мозгу свидетельствуют о значимости индивидуального паттерна (здесь - в широком смысле слова), накладывающегося на видовую принципиальную структурнофункциональную организацию мозга. Если попытаться проанализировать

соотношение видового (надвидового) и индивидуального в механизмах мозга, можно было бы построить схему-шкалу: от видового к индивидуально-видовому, от индивидуально-видового к видовому - надвидовому. На этой схеме-шкале к видовому должно быть отнесено само строение мозга, его жесткая структурно-функционально генетически детерминированная организация. Индивидуально-видовой является организация индивидуально формирующихся систем деятельности и нейрофизиологических кодов психической деятельности, а вновь видовыми и надвидовыми - многие, если не все, биохимические и молекулярно-биологические основы функционирования мозга. Значение среднего звена схемы очень велико. Оно лежит в основе индивидуальности, неповторимости индивидуальных возможностей каждого человека. Значение правого звена схемы не только в общем положении единства человека со всеми живыми организмами. Оно и в других, более частных, положениях. Так, например, если данные о строении человеческого мозга могут быть получены только при изучении человека, а эволюционный подход способствует пониманию происхождения особенностей, присущих мозгу этого высшего млекопитающего, если данные о мозговой организации обеспечения индивидуально формирующихся у человека функций и, особенно специально человеческих, возможно получить только при исследовании, проводимом у человека, - при сугубо вспомогательном значении эксперимента, то изучение биохимических и молекулярнобиологических механизмов мозга вполне осуществимо в эксперименте на животных, в том числе и на сравнительно низко организованных. Правда, не исключено, что при исследовании мозга человека будут вскрыты новые стороны вопроса. Именно в данной работе обязательного упоминания заслуживают надвидовые свойства специфических полипептидов, свойства, позволяющие переносить патологические процессы (мозговую память о них?) от человека к животным (Вартанян, Балабанов,

1978) и, может быть, в дальнейшем - корригировать патологическую матрицу памяти человека полипептидами животного происхождения. Приведенные данные о мозговой организации памяти, ее структурном соотношении с деятельностью здорового мозга, лежащем в основе формирования матриц памяти, имеют значение для понимания законов функционирования больного мозга, многоплановых соотношений памяти и болезни.

Хроническое заболевание мозга формирует свой, новый рисунок матрицы памяти, перестраивая не только матрицу в целом, но и меняя удельный вес разных ее звеньев, создавая на самой основе закрепления реакций в памяти важнейшие звенья матрицы патологической памяти. Вероятно, излишне напоминать, что речь здесь идет не только и не столько о психонервной памяти, сколько о памяти как о базисном механизме, явлении и процессе мозга. Болезнь, таким образом, влияет на процессы памяти. В больном мозгу в связи с болезненными утратами и избыточной активностью формируется по тем же принципам, что и в норме, распределенная матрица, поддерживающая устойчивое патологическое состояние, влияющая далее на болезнь также по тем же основным законам, как и память здорового организма влияет на его функции. Так, например, стойкий эпилептогенный очаг, сформировавшись под влиянием постоянного раздражения в эпилептическом мозгу, становится далее важнейшим звеном матрицы памяти, поддерживающей устойчивое патологическое состояние, определяющим в большей мере и общее функциональное состояние мозга, и психонервную память, и эмоционально-психическую деятельность. В лечении хронических болезней мозга приходится использовать приемы воздействия на исходную вредность, на болезненную избыточность и недостаточность активности разных систем и структур, на матрицу памяти и отдельные ее звенья. Способ активного преодоления устойчивого патологического состояния и поддерживающей его матрицы долгосрочной памяти с помощью лечебных точечных электрических стимуляций мозга, предложенный впервые в нашей лаборатории В. М. Смирновым (Смирнов, Сперанский, 1972), затем примененный в Мадриде Дельгадо (Delgado, 1973), был возведен в ранг программных проблем конгрессов по стереотаксической и функциональной нейрохирургии (1979, июль, Париж). Прием для «стирания» памяти о местном эпилептогенезе рассмотрен выше. Успешное лечение фантомно-болевого синдрома оказывается возможным воздействием не только на проводящие болевые импульсы пути, но и на память о болезни: речь идет о наблюдавшейся нами дезинтеграции фантомно-болевого синдрома при лечебной электрической стимуляции подушки таламуса - ядра, активного в отношении памяти и не имеющего прямого отношения к самой боли.

Таким образом, исследование механизмов памяти здорового и больного мозга, вскрыв некоторые общие закономерности, открыло новые перспективы модуляции памяти в интересах больного и больных, еще далеко не до конца используемые. В то же самое время результаты исследования памяти здорового и больного мозга выявили общность принципиальных механизмов здорового и больного мозга, показали возможность понимания механизмов болезни на основе изучения механизмов здорового и целенаправленного управления механизмами больного мозга.

Глава седьмая Ближайшие перспективы в физиологии мозга человека на основе ее сегодняшних возможностей

Из неявных вещей одни неявны раз навсегда, другие - по природе, третьи - для известного момента.

Секст Эмпирик

В середине 30-х годов был заложен первый камень фундамента диагностики очаговых поражений мозга с помощью электроэнцефалографии. И хотя, по-видимому, электроэнцефалография и далее будет использоваться для локальной диагностики при

эпилепсии, для оценки местного и общего функционального состояния мозга при других его заболеваниях, роль этого метода станет несколько иной. То, что было первоначально и наукой, и в большей мере - искусством, результатом личного, обычно не формализуемого и не всегда даже вербализуемого опыта исследователей, постепенно, с созданием совершенных приборов, становится доступным все большему кругу специалистов. С введением компьютерной томографии диагностика не только значительно уточняется, но и упрощается (Ghazy et al., 1978; Верещагин, 1980). Диагностика очаговых поражений мозга в будущем без этого метода, в том числе и при эпилепсии, будет по праву считаться несовершенной и, пожалуй, архаичной. Еще большие возможности диагностики не только так называемых органических, но и тех заболеваний, которые относятся к функциональным, где изменения в мозгу или частично обратимы, или компенсируемы, сулит использование ядерно-магниторезонансного и позитронно-эмиссионного томографов (Russell, Wolf, 1984; Ingvar, 1985). Что же, развитие техники, таким образом, лишает куска хлеба физиологов, исследующих мозг человека!?

Ничуть не бывало! Развитие техники освобождает физиологов от рутинной работы, вооружает их новыми общими и частными приемами анализа материала и позволяет сегодня решать задачи, сама постановка которых несколько десятилетий назад казалась фантастической. Так, например, благодаря научно-техническому прогрессу, обеспечившему возможности телеметрического наблюдения за больным и использования данных регистрации физиологических показателей, стало возможным выявить те условия возникновения припадка при эпилепсии, те состояния мозга, при которых события еще можно повернуть в желаемое русло, конкретно - не допустить развития припадка со всеми вытекающими из него тяжелыми последствиями для мозга и организма. Достижения в области клинической нейрофизиологии не исчерпываются этим примером. Он приведен только для того, чтобы показать, что научно-технический прогресс, как бы сужая какие-то области использования физиологических методов, не только расширяет другие, но и создает предпосылки к постановке и решению принципиально новых задач. Конкретное проявление научнотехнического прогресса в физиологии человека - это и новая техника, и новые методы анализа физиологических данных, и ставшая привычной совместная работа физиологов, физиков, математиков. Комплексные лаборатории становятся рабочими коллективами на основе длительных рабочих контактов, причем время и силы, потраченные на выработку взаимопонимания при достаточно высоком профессиональном и творческом уровне сотрудничающих специалистов, как правило, с лихвой себя окупают, позволяя переходить на новые уровни исследования. Только в условиях рабочего содружества специалистов разного профиля оказалось возможным исследование так называемых местных и дистантных перестроек импульсной активности нейронных популяций мозга человека на разных этапах реализации психической деятельности и влияния долгосрочной памяти на протекание самых различных процессов в мозгу. Дело вновь за техникой: разработанный математический аппарат при достаточно совершенной усилительной технике позволит, по-видимому, извлечь дополнительную информацию из других электрических процессов мозга. Нетворческое содружество физиологов, физиков, математиков, инженеров не самоцель. Оно должно привести к созданию новых стандартизованных методов исследования, с помощью которых физиолог сможет осуществить исследование уже без постоянной посторонней помощи, хотя контакты с физиками и математиками будут для него полезными при решении новых проблем. Физики, математики и инженеры охотно идут в те области физиологии, где они являются полноправными творческими участниками исследований. Рабочее общение с физиологами обогатит не только физиологию. Познание законов работы мозга и, в частности, того, как менее двух килограммов живого вещества с легкостью решают задачи, лишь частично посильные самым совершенным машинам, послужит и развитию точных наук. Прежде всего это поможет созданию новых, более совершенных технических систем, искусственного интеллекта по образу и подобию естественного, но с выигрышем возможностей за счет быстродействия технических систем. Пожалуй, хотя сейчас самая совершенная ЭВМ и прошла от своего прообраза 30-х годов (Turing, 1936) довольно длинный путь, ей еще очень много немеренных верст осталось до мозга человека. Именно поэтому в области технических систем в выигрыше оказываются те специалисты, которые используют не только возможности своего мозга, но и механизмы, лежащие в основе его деятельности (Усов, 1976а, 19766; Усовидр., 1977).

Механизмы живого мозга, как известно, не делятся на физические, физиологические, биохимические, молекулярно-биологические и т. д. Это исследователи, как правило, вынужденно изучают какой-то определенный аспект, поскольку в биологии аналитический подход все еще более разработан по сравнению с интегративным. Но, изучая одни проявления процесса, мы не только не видим его в целом, но нередко, именно в результате такого подхода, процесс непрерывный превращается в дискретный. Примером является изучение памяти. Примат физиологического подхода к изучению мозговых механизмов памяти до самого последнего времени был оправдан принципиально разными возможностями исследования процессов живого мозга методами физиологии и биохимии. Изучая то, что поддавалось исследованию, физиологи стремились окружать никогда не познаваемые полностью только физиологическими методами механизмы памяти все более тесным «физиологическим кольцом». С помощью физиологических методов удается исследовать процесс восприятия и более или менее короткий след от него: не процесс, а результат считывания из долгосрочной памяти в оперативную, по- видимому, нейрофизиологические корреляты забывания, а также, прямо или косвенно, влияние долгосрочной памяти на различные мозговые механизмы и процессы, в том числе и на психонервную память. Сама же долгосрочная память, ее

субстрат и процесс формирования были лишь предметом изучения в специально ориентированных экспериментах, до последнего времени дававших значительно больше отрицательных, чем положительных, результатов. Надо сказать, что и сейчас изучение физиолого-биохимических механизмов памяти не всегда эффективно, несмотря на полученные данные о роли медиаторных систем (Бородкин, Крауз, 1978), пептидов, белков и других биологически активных веществ в ее процессах.

Сказанное относится, естественно, не только к памяти, ноик исследованию различных систем, функций и механизмов головного мозга. И вто же самое время наряду с методическими сложностями и вопросами, во многом сегодня уже решаемыми, нельзя не остановиться вкратце на идейном, проблемном аспекте физиологии здорового и больного мозга человека и главным образом на примере изучения нейрофизиологии психики. Сегодняшний день физиологии отличается от вчерашнего тем, что по многим линиям, в том числе и не намечаемым вчера, уже идет накопление результатов, их анализ, систематизация и обобщение. Получено много новых, в большой мере недостаточно интегрированных (часто даже противоречащих друг другу!) данных в области структурно-функциональной организации мозга. Есть результаты исследования физиологических процессов, позволяющих качественно и количественно оценивать функциональное состояние мозга. Началось и развивается изучение тончайших нейрофизиологических перестроек, тесно связанных с характером деятельности организма. Настало время - и это одна из важных задач завтрашнего дня - вплотную подойти к решению вопроса о механизмах взаимодействия различных зон мозга, звеньев мозговых систем в процессе обеспечения различных, и в том числе наиболее сложных, видов деятельности. Сегодня было бы неправомерно умолчать и о важности широкого изучения роли нейропептидов в обеспечении различных деятельностей мозга человека.

Здесь нет необходимости освещать состояние всех проблем физиологии здорового и больного мозга человека. Выбор проблем в данном случае определяется, прежде всего, их значением для данного научного направления. Вчера, сегодня и завтра, несомненно, важнейшим вопросом физиологии мозга являлась и является проблема соотношения структуры и функции в мозгу человека. Изучение этой проблемы осуществляется сегодня в условиях непрямого, а также, что очень важно, прямого двустороннего контакта с мозгом человека.


Прочитайте также: